Search results for "GFAP stain"
showing 3 items of 3 documents
Alexander Disease Mutations Produce Cells with Coexpression of Glial Fibrillary Acidic Protein and NG2 in Neurosphere Cultures and Inhibit Differenti…
2017
Background Alexander disease (AxD) is a rare disease caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). The disease is characterized by presence of GFAP aggregates in the cytoplasm of astrocytes and loss of myelin. Objectives Determine the effect of AxD-related mutations on adult neurogenesis. Methods We transfected different types of mutant GFAP into neurospheres using the nucleofection technique. Results We find that mutations may cause coexpression of GFAP and NG2 in neurosphere cultures, which would inhibit the differentiation of precursors into oligodendrocytes and thus explain the myelin loss occurring in the disease. Transfection produces cells that diff…
2015
The pathogenesis of glaucoma, a common neurodegenerative disease, involves an immunologic component. Changes in the natural autoantibody profile of glaucoma patients were detected, showing not only up-regulated but also down-regulated immunoreactivities. In recent studies we were able to demonstrate that the antibody changes have a large influence on protein profiles of neuroretinal cells. Furthermore we could demonstrate neuroprotective potential of one of the down-regulated antibodies (γ-synuclein antibody). Anti-GFAP antibody is another antibody found down-regulated in glaucoma patients. Since GFAP expression is intensified in glaucomatous retina, the aim of this study was to detect the …
Characterization of rodent pineal astrocytes by immunofluorescence microscopy using a monoclonal antibody (J1-31).
1987
In previous studies pineal astrocytes have been characterized immunohistochemically mainly by use of antisera to glial fibrillary acidic protein. Because of the recent demonstration of this protein in non-astrocytic cells the question of its specificity as an astrocytic marker has been raised. A possible alternative tool for characterizing pineal astrocytes is the J1-31 monoclonal antibody, which is directed against a 30 000 dalton astrocytic protein clearly distinguishable from glial fibrillary acidic protein. Immunofluorescence microscopy of this antibody in the pineal gland of rat and guinea-pig revealed a staining pattern similar to that obtained by glial acidic fibrillary protein antis…